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Abstract—This paper investigates landslide as a consequence of the unstable slide of an initially
stationary or creeping slope triggered by a small perturbation, such as the effect due to rainfall.
Motivated by Skempton's (1985) observation on clay and siltstone containing low clay fraction, the
one state variable friction law proposed by Ruina (1983), in which shear resistance along the slip
surface (v) depends on both sliding history (or the state) and the creeping velocity of the slope (V),
is extended to model both fluid-saturated rock and soil joints. Presuming that the slope is shallow
and infinitely long, a system of three coupled nonlinear first-order differential equations, relating 7,
V and u (displacement of the slip surface), is formulated. Linear stability analysis suggests that an
equilibrium state (or a critical point) of a slope can be classified as either an asymptotically stable
spiral point, an asymptotically stable improper point, or an asymptotically unstable saddle point in
the dimensionless shear stress—velocity (s—v) phase plane, depending on the state parameters on the
slip surface. For the special case that steady state 7 is insensitive to ¥ and the gravitational pull
equals the threshold shear stress (7o), the critical point becomes a neutrally stable equilibrium line
in the s-¢ phase plane; trajectories in the s—v phase plane are obtained analytically for this case.
Periodic solution (or Hopf bifurcation) for the system is ruled out based on physical grounds. A
fully nonlinear numerical analysis is done for all possible scenarios when a finite perturbation is
imposed to the equilibrium state. As the slip continues and erosion due to rainfall occurs, nonlinear
parameters of the slip surface may evolve such that a previously stable slope may become unstable
(i.e. bifurcation occurs) when a small perturbation is imposed. Thus, the present analysis offers a
plausible explanation to why slope failure occurs at a particular rainfall, which is not the largest in
the history of the slope.

1. INTRODUCTION

Many landslides around the world were triggered by rainfall {e.g. Kim et a/. (1991) ; Pierson
et al. (1991); Polloni et al. (1991) ; Premchitt ez al. (1994)]. The effect of perched ground
water level on slope stability has been studied extensively [e.g. Iverson (1991) ; Varadarajan
et al. (1980); Moriwaki (1985); Sammori and Tsuboyama (1991)]. However, there is a
concern that statistical relation between rainfall data and landslide occurrence may lead to
the pitfalls associated with such predictions (Bhandari et a/., 1991).

In particular, there remain many intriguing unanswered questions relating to rainfall
triggered landslides. For examples, at a particular hill-side under heavy rainfall, why one
slope fails while the adjacent slopes stand, even though the rainfall data and slope type are
virtually the same? How can one explain that the failure of a particular slope occurring at
a rainfall which is not the largest in the history of the slope? Traditional slope stability
analysis based on limit analysis surely cannot answer these questions. In order to capture
the subtle nature of slope failure after rainfall, the state and the nonlinear constitutive
response of a slip surface must be incorporated in order to achieve a better prediction of
landslide.

This paper investigates the possibility that failure of slopes along rock joints or soil
interfaces is a consequence of unstable slide bifurcated from a stationary or creeping slope
when it is subjected to a small perturbation, such as a sudden change in either the shear
stress or velocity along the slip surface after heavy rainfall. Although the stability of
creeping slope has been studied by Savage and Chleborad (1982) and Davis et al. (1990,
1993), the feature of nonlinear friction law and its consequence on landslide have not been
fully explored. Motivated by the laboratory data on dry rock joints (Dieterich, 1979;
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Ruina, 1983 ; Tullis and Weeks, 1986 : and others) and on fluid-saturated clay and siltstone
containing low clay fraction (Skempton, 1985), we adopt in this study the one state variable
friction law proposed by Ruina (1983). Note that for slopes with no well-defined slip
surface, such as rock joint or soil interface, an analysis for progressive failure should be
incorporated (e.g. Palmer and Rice, 1973); such analysis is, however, out of the scope of
the present study.

Although the applicability of the state variable approach to dry rock joints has been
studied extensively (Ruina, 1983 : Rice and Ruina, 1983 : Gu ef al., 1984; Tullis and Weeks,
1986: and others), its possible application to water-saturated (wet) slip surface or joints
has not been investigated. Motivated by the experimental results for saturated clay by
Skempton (1985), we propose here that the dry friction law proposed by Ruina (1983)
applies equally to slip surface containing saturated clay. In particular, Skempton (1985)
reported that, in the ring shear test for clay, the shear stress along the slip surface jumps to
a higher value if a sudden change in the sliding velocity is imposed, and decreases to a new
steady state as the sliding continues. This is exactly the same as the jump phenomenon,
described by Ruina (1983) and others, observed for dry rock joints driven by a spring
attached to the upper rock block.

Note that although most of Skempton’s (1985) experimental results were done on clay
undergoing “fast rate sliding™ (sliding velocity ¥ > 0.01 mm min™"), such as those induced
by earthquakes, the same phenomenon was also observed on fluid-saturated clay with much
slower sliding rate (¥ < 0.01 mm min~'). In particular, the last peak in Fig. 20 and the
second to last peak in Fig. 23 of Skempton (1985) show clearly that jumps in shear stress
exist before the shear stresses decrease to the steady state value, despite that the magnitude
of jumps is much smaller compared with those occurring at ““fast rate tests” and that there
is no significant change in the residual shear strength. Nevertheless, this lends credence to
the universality of the “jump phenomenon’ regardless of the displacement rate along the
slip surface. Furthermore, Skempton (1985) also suggested that the jumps in shear stresses
are induced by the negative pore pressure generated by the sudden increase in sliding
velocity. If his conjecture is correct, the jump phenomenon should appear at all sliding
rates.

The aim of this paper is to provide a general framework which applies the one state
variable friction law to landslide problems. To make the problem mathematically tractable,
we only consider here shallow landslides (mostly for natural slopes) which can be idealized
by infinite slope assumptions. In particular, driven by the gravitational pull, the sliding soil
or rock mass is basically equivalent to a single sliding block with a frictional surface at the
bottom. By force equilibrium parallel to the slope surface, a system of three coupled
nonlinear first-order differential equations is formulated. Linear stability analysis is then
applied to study the possible behavior when small perturbation is imposed to a stationary
or creeping slope. However, nonlinear numerically stability analyses will be considered
when the system is finitely perturbed. by imposition of a sudden jump in either the friction
stress or the creeping velocity. The effect of rainfall enters the analysis only through the
sudden change in either shear stress or creeping velocity ; i.e., it is considered as a triggering
factor of slope instability.

2. NONLINEAR STATE VARIABLE FRICTION LAW

In this section, motivated by Skempton’s (1985) data we propose that the one state
variable dry friction law by Ruina (1983) applies equally to wet slip surfaces containing
saturated clay. Presuming that the memory dependence of the slip surface, either a fluid-
saturated soil interface or a fluid-saturated rock joint, can be reasonably represented by a
current state variable, which itself evolves with ongoing slip, the constitutive response of
the slip surface is characterized by (Ruina. 1983):

T=1y+0+A4In(V/V,), 1)
W@ Bmay, 2
d[ - [’[ + n( / ())]’ ( )
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where V is the slip velocity, V,, is the reference velocity, 4 and B are empirical constants, 7,
is the threshold stress level, 7 is the time variable, and L is a characteristic decay length
scale. For V' = 0, we normally assume that Coulomb’s friction law applies ; that is: 7, = ua,
where u and ¢ are the frictional coefficient and the normal stress at the slip surface. The
state variable 8 is introduced to characterize the current mechanical state of the slip surface.
The parameters, A, B, L, t, and 8, distinguish one slip surface from the others, even though
they may be composed of the same material. In general, & remains constant for steady state,
but evolves for unsteady slip.

Figure 1(a—) reports some experimental results for friction stress variations with slip
rate changes for Quartzite rock joint (Ruina, 1983), Kalabagh Dam clay, and siltstone with
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Fig. 1. Frictional stress variation with the change in sliding velocity observed experimentally and
predicted by eqns (1) and (2). Experimental plots are: (a) Quartzite rock joint (after Ruina, 1983),
(b) Kalabagh Dam clay (after Skempton, 1985), and (c) siltstone with low clay fraction (after
Skempton, 1985) ; and theoretical prediction is given in (d) by the one state variable friction law.
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low clay fraction (Skempton, 1983) respectively; and a typical prediction by eqns (1) and
(2) is given in Fig. 1(d). In particular, eqns (1) and (2) predict that the shear stress along
the slip surface increases by A when the velocity increases suddenly from V; to eV,
(e ~ 2.71828), and then decreases exponentially with ongoing slip by amount B, with a
characteristic decay length of L. As 8 evolves with ongoing slip, a new steady state value
— BlIn(¥/V,) will be approached ; and the new steady state stress becomes :

T =Ty +(A—B)In(V/V,). 3)

Differentiating eqn (3) with respect to }. we have the velocity dependency of 7:

dr 1
Y~ (4-B). 4
gy = A=B 4)

The slip surface is velocity strengthening if 4—B > 0 (i.e. dt,/dV > 0), and is velocity
softening if 4—B < 0 (i.e. dr,/dV < 0). As shown by Ruina (1983), such a response of
eqns (1) and (2) is capable of describing the laboratory observations. We refer to Ruina
(1983), Rice and Ruina (1983), Gu e¢r al. (1984). Tullis and Weeks (1986) and other for
more detatled description of this one state variable constitutive framework.

Figure 1(b.c) shows typical results of rate dependency on saturated clay obtained by
the ring shear test (Skempton, 1985). Note that the shear stress suffers a jump as the slip
rate is increased suddenly, and follows by an exponentially decay with the ongoing slip.
This suggests that eqns (1) and (2) apply equally well in describing the wet (fluid-saturated)
friction phenomenon although this framework was originally motivated by a dry friction
experiment on rock surface. Although Fig 1(b.c) is extracted from the results of fast-rate
tests (V> 0.01 mm min™'), a similar phenomenon, as discussed in the Introduction, is
expected for much slower creeping rates. which are more likely to be observed in creeping
slopes.

Based upon the above nonlinear constitutive description of the slip surface, a system
of equations for infinite creeping slopes is formulated next.

3. FORMULATION FOR CREEPING SLOPES

To investigate the effect of nonlincar state variable friction law in a reasonably simple
way, we consider in this paper the stability problem of a long slope with a pre-existing slip
surface, probably a soil interface filled with softer clay or a rock joint filled with gouge. A
slope at equilibrium is either initially stationary or creeping steadily at a very slow rate.
When a perturbation in either shear stress or velocity is imposed, the force equilibrium will
simply be the balance of the gravitational pull. the self weight of the overlying rock or soil
mass, and the inertia force along the direction parallel to the slope surface. As shown in
Fig. 2. it is mathematically equivalent to replacing the translational sliding slope by a single
sliding block. Consequently. the acceleration of the sliding mass is:

V(t)

R

Fig. 2. The force equilibrium for an idealized infinite slope with sliding velocity ¥(f) and overlying
weight W, and subject to a shear stress 7(¢) at the bottom.
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dv T
= - gsini— — 5
T gsini P %)

where g is the gravitational constant ( = 9.81 m s~2), i the slope angle, p the mass density,
and 4 the thickness of the overlying soil or rock mass. Differentiating eqn (1) with respect
to time, we obtain:

dr d8 A4dV

a-atvar ©
Substitution of eqns (2) and (5) into eqn (6) leads to:
dr |4 A

—= - — ini—1). 7

4O L[9+Bln(V/V0)]+phV(pghsmz T) 0

Equations (7), (2), (5) and the displacement-velocity relation (i.e. du/dz = V, where u is
the sliding displacement) form a system of four first-order differential equations for t, V, 0
and u. However, @ can be eliminated by using eqn (1); and the system of equations is
reduced to:

dt V A .
Frie _Z[T—Io+(B—A)ln(V/V0)]+ W(pghsmz—r), ®
dv 1 .
P ﬁ (pghsini—1), )
du
= (10)

The solution of eqns (8)-(10) gives t(¢), V(¢) and u(¢) ; then 6(¢) can be found by using eqn
(1). Before we proceed to consider the possible behavior of this nonlinear system, it is
convenient to introduce the following dimensionless stress (s), velocity (v), displacement
(8), and time (7):

s=1/4, v=n(VIV,), 6=uh, T=Vstih (11)

The nonlinear system can then be rewritten as:

d_sT = A [s—so— (1= B)o] + %(‘/—S), (12)
dv e*
a—]—-‘= K ()’—S)v (13)
ds
» e (14)

where sy = 1o/A, k = pV}/A, y = pghsini/A, B = B/A, and i = h/L. Note that the system
is autonomous, since the rates of s, v and é do not contain time variable (T) explicitly.
Because the system (12)—(14) is nonlinear, exact solutions for s, v and 9 are, in general, not
possible. Thus, it is informative to first consider the possible equilibrium solutions and their
corresponding stabilities, before we try to solve the system numerically.



3456 K.T. Chau
4. LINEAR STABILITY ANALYSIS OF THE SYSTEM
The equilibrium or so-called critical point of the system can be obtained by setting:

ds/dT = dv/dT = 0 [e.g. Minorsky (1962) ; Boyce and DiPrima (1986)]. The critical point
in the s—v phase plane is:

(15)

This corresponds to the rate of changes of s and v to vanish simultaneously. Thus, a steady
sliding slope is always possible if force equilibrium is satisfied. A stationary slope is a special
case of this critical point when the gravitational pull equals the threshold shear stress; i.e.
so =1y and ¢ = 0. Note that the solutions s(7) and v(T) will form trajectories on the s—v
phase plane.

It is important to know whether a stationary or steadily sliding slope is stable subject
to a small perturbation, such as a sudden change in both s and v resulting from a heavy
rainfall. Will the steadily sliding slope become unstable (v — oo as T — cc) or remain stable
(v—>vas T— 0)?

To shed light on this question, we use the phase plane analysis [e.g. Minorsky (1962) ;
Boyce and DiPrima (1986)] for some qualitative information about the equilibrium solu-
tion. First, we introduce the new variables:

¢=s5-5 yYy=v-0 (16)
which corresponds to the perturbation about the equilibrium point or the critical point

(5,0) ; and the critical point becomes the origin in the ¢ —y space. Substitution of eqn (16)
into eqns (12) and (13), the following governing equations for ¢ and ¥ are obtained :

d . e’ :
E‘.g _ (ﬂ.e"+ ?7)¢+;.ef'<1 — B 9., a7
dy e’

where g,(¢, ) and g,(¢, ¢) are the nonlinear terms of the expansion about (3, 7). It can be
shown that both g,(¢, ¢) and g.(¢, ¥) decay much faster than the distance from the critical
point in the sense that :

gD )ir—0, g,(¢,¥)/r >0, as r-0, 19)
where r = (¢*+y?)'? is the distance from the origin. Consequently, eqns (17) and (18) are
almost linear near the critical point. Then, a linear stability analysis can be applied to study

the stability near the critical point. In particular, we linearize eqns (17) and (18) by dropping
g, and g,, and seek solutions of the form:

¢ =c e, V=c e, (20

where ¢, and ¢, are arbitrary constants. It is straightforward to see that w is the eigenvalue
of the linearized system, and equals:

e’

;= [pt(p’—4¢9)'?))2, p= ~(/‘te"’+ -

}oa=la-p e

Note that the radicand in the first part of eqn (21) can be rearranged as:
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e 42
P —dq = <}te‘ we?) L 22)

K

If /, § and « are all positive, the eigenvalue will not be complex (or the critical point will
not be a spiral point). Physically 4 and k must be positive, but f may be negative although
the results of experiments on rock joint (Ruina, 1983) and clay (Skempton, 1985) strongly
suggest that f is positive. In the subsequent discussion, we will not restrict our consideration
to positive f.

Note also that p < 0 for positive 4 and x. Thus, the possibility of periodic solution (or
Hopf bifurcation) for s and v is ruled out, since periodic solution corresponds to p = 0 and
g > 0 (i.e. w, and w, are purely imaginary). For p < 0, the critical point (or the steady state
solution) will not be an unstable spiral point (i.e. w, and w, are a complex conjugate pair
with positive real part) or unstable improper node (i.e. w, and w, are real positive numbers
of unequal magnitude). Consequently, the critical point can only be either an asymptotically
stable spiral point, an asymptotically improper node, or an unstable saddle point (Section
5 will show further that the critical point can also be ““a neutrally stable equilibrium line”
for the special case that § = 1 and y = s;). These possible scenarios are summarized in Fig.
3 and their corresponding stabilities are summarized here:

1. Spiral points with asymptotic stability
If the parameters of the slip surface satisfy : p < 0; p*—4g < 0, the eigenvalues become
a complex conjugate pair with a negative real part. As remarked earlier, p < 0 is always
satisfied, and p*—4q < 0 yields

p< - :/ ()Le"— e——)h. (23)

Thus, if § is negative and satisfied eqn (23), the critical point is an asymptotically stable
spiral point. This implies that B must be negative for positive 4. Although both the
experimental results by Ruina (1983) and Skempton (1985) suggest that 4 and B are of the
same sign, we do not rule out such possibility here. In particular, a small perturbation
about the steady state solution (5, 7) will result in a solution [s(7), #(T)] forming a trajectory
moving spirally towards the equilibrium point (5, &) as shown in Fig. 3. Theoretically, the
solution approaches the critical point as origin as T — c0. When the slope is subjected to a

Me¥- eV/x)? + 4AB/k = 0

|

B < -k(Ae'- e )Y@l q=M(1 - Bk

e

4 I,
o N
Y,

Fig. 3. Regime classification for three possible types of equilibrium point in the p—q parameter
space. In particular. # < —«(2e"—e "/x)*/(44) for asymptotically stable spiral points, f < 1 for
asymptotically stable improper nodes. and f < | for unstable saddle points.
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Fig. 4. Sketches for velocity evolutions when the sliding velocity is suddenly increased to #+ Ar: (a)
for unstable response ; (b) for stable response.

small change in v, a typical velocity response with displacement is shown in Fig. 4(b). That
is, the solution is asymptotically stable in the sense that if ¢ and  are small, and the
trajectories of the linear system are satisfactory approximations to those of the actual
nonlinear system eqns (17) and (18). But, what is small? Or, what is the region of asymptotic
stability, beyond which g,(¢, ) and g,(¢, ) are no longer negligible? We must go back to
the original nonlinear system and study numerically the set of initial conditions for which
a critical point is asymptotically stable ; as will be shown in Section 5 that the linear analysis
approximates the actual response adequately even for finite perturbation in s or v.

4.2. Improper nodes with asymptotic stability

If the parameters of the slip surface satisfy : ¢ > 0; p* —4g > 0, the eigenvalues are real
negative and unequal (w, < w, < 0). This implies that § <1, or 4 > B. Note that the
condition of velocity strengthening [see eqn (4)] merges with the condition for the critical
point being an improper node with asymptotic stability. In particular, any small per-
turbation about the critical point will result in a solution approaching the origin, and it
also tends toward the direction of the eigenvector corresponding to w,. Again, when the
system is subjected to a small change in v, a typical velocity evolution with displacement is
given in Fig. 4(b). However. if the initial perturbed point is exactly on a line of the direction
of the eigenvector corresponding to w,, the solution will remain on the direction and
approach the origin as 1 — oc. Again the region of asymptotic stability should be estimated
numerically if the perturbation is not small; the numerical results will be given in Section
5.

4.3. Unstable saddle points

For this case, the eigenvalues are real and of opposite sign (i.e. w, > 0 > ®,), and the
parameters satisfy : ¢ < 0 and p°—4¢ > 0. These conditions are satisfied if > 1 or B > 4.
The experimental results of Ruina (1983) for dry rock joints give B > A4 ; and, Skempton’s
(1985) results on clay joints give 4 < B. That is, B > A is always a possibility, depending
on the state and mechanical properties of the slip surface. If the initial perturbed state is
on the line along the direction of the eigenvector corresponding to w-, the solution will
remain on the line and approach the critical point at the origin as 7 — oc, because the
solution contains only a negative exponential term. For all other initial states, the positive
exponential term will dominate for large 7. so eventually all solutions approach infinity
asymptotic to the line determined by the eigenvector corresponding to ,, as shown in Fig. 3.
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Stable ‘}—» Unstable

B=1 B

Fig. 5. The f-dependency of the velocity measure r. The equilibrium state v = ¢ is stable for § < 1

(indicated by a solid line) and unstable for § > 1 (indicated by a dashed line). The bifurcation point

is at f = 1: the dashed segment of the curve with appended question mark is intended to indicate
qualitatively a larger value of ¢.

This is the most crucial case among all three possible scenarios. Physically, if a small
perturbation is imposed to an equilibrium state (a saddle point), such as the effect of
earthquake or rainfall on the slip surface, a stationary or steady creeping slope will become
unstable. Eventually as ¢o(7T) increases drastically, catastrophic landslides will result (see
Fig. 4(a) for a sketch of the response). Note that. in general, rainfall will increase the pore
pressure at the slip surface ; consequently, it decreases s and increases v. Thus, the effect of
rainfall 1s equivalent to adding a negative As and a positive Av as perturbation. So far, we
have assumed that the system is autonomous (or physically the parameters of the system
are time-dependent). However. if f§ of a slip surface is <1 (i.e. the equilibrium state is an
asymptotically unstable improper node) and is allowed to change, probably due to erosion
by previous heavy rainfall, it may happen that > 1 is resulted after a series of heavy
rainfall (1.e. the stable improper node evolves to an unstable saddle point). Then, if a slope
containing such a slip surface is perturbed by a rainfall (which may be much smaller than the
previous ones), it will cause a catastrophic landslide. Mathematically, § can be considered as
a nonlinear parameter; f = 1 corresponds to a bifurcation point, at which unstable slide
bifurcates from the primary state v = #. The situation can be summarized with reference to
Fig. 5, which shows the f-dependency of the velocity v. The dashed curve segment of the
bifurcation with an appended question mark is intended for only qualitative indication of
large v.

The argument given here suggests that slope failure may be triggered by a rainfall
which is not the largest in the history of the slope, depending on the evolution of the
parameters of the slope caused by its environment. Thus. the present analysis provides a
new feature which is more attractive than the conventional slope stability analysis.

Note also that the condition for a critical point being an unstable saddle point merges
with the condition for velocity softening.

5. NONLINEAR STABILITY ANALYSIS OF THE SYSTEM

The previous section is based on a linear stability analysis near the critical point. Now
we return to the nonlinear system (12)—(14). The solutions of this autonomous system can
be described as curves, or often called trajectories, on the s—» phase plane. Instead of
solving the system (12)-(14), these trajectories can be found by solving a related first-order
differential equation:

A e 24
T —E)[ﬁ_-\u_l( —Ple, (24)

which is obtained by combining eqns (12) and (13). Alternatively, this can be written in
differential form as:
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(7 —s5)ds+ {ix[s—s5o —v(1 = B)]e* —y+s} dv = 0. (25)

The left side is not a perfect differential but we can multiply eqn (25) by an integrating
factor e/ (s,v) to get

dP(s,v) = ¢/“(y—s)ds+e/“ {ik[s—s, —v(l — B)]e* —y+s} dv = 0. (26)

That is. we seek a function P(s.v) = C (where C is a constant), which is a trajectory of the
solution in the s-v phase plane. Denoting P, and P; as the coefficients of dv and ds in eqn
(26) respectively, the condition for an exact differential requires that 0P,/0s = ¢ P,/0v, which
then yields

ar

(y—s5) ;—i — {Ik[s—so—v(1=PB)e* —y+s} g —(Ake*™ +1) = 0. (27)

Once f(s,v) in eqn (27) is solved, the function P(s,») = C can be found. Consequently, the
trajectories of the solution in the phase plane for the nonlinear system (12)-(14) can be
used to study the stability of the system. However, the integrating factor f(s,v) can only
be found in special cases.

5.1. Trajeciories for neutrally stable equilibrium lines
In particular, if 8 = 1 and y = s,. a solution for eqn (27) is f = —In (s—s,). Then, the
trajectories can be obtained by integrating eqn (26) as:

P= s+ %Ke:"Jrv——-C, (28)

where C is a constant. Although the trajectories can be solved analytically only for this
particular case, the state of § = 1 and 7 = s, corresponds to an interesting situation. As we
remarked previously, the critical point changes from an asymptotically stable improper
node to an unstable saddle point when § < 1 changes to $ > 1. Thus, # = 1 is a transition
point between two different types of stability. Physically, as demonstrated in Fig. 1, it
corresponds to 4 = B, or to the case that the steady state shear stress 1, is insensitive to
the sliding velocity V. Skempton’s (1985) results suggest that such situation is quite possible
for clay and siltstone with low clay fraction, in which the steady state residual strength is
roughly the same for different V. The condition y = s, implies the gravitational pull along
the slip plane due to overlying soil or rock mass equal to the threshold shear stress level;
i.e. the slip surface is an quasi-static equilibrium. Note that the § = 1 the critical point
becomes the line s = s, with v arbitrary, i.e. when the forces are in equilibrium and the
friction law is rate-insensitive, any initial constant slip velocity can be an equilibrium state.

Figure 6 shows typical trajectories for various P = C given in eqn (28) ; the dashed
horizontal line is the equilibrium line s =s, The plot is for /=15 x=2.0 and
y=f =5 = 1.0. Note that for the larger v (say » > 2), the exponential term in eqn (28)
will dominate and trajectories become essentially independent of s, as shown in Fig. 6. The
directions of the arrows shown in Fig. 6 seem to suggest that the equilibrium line is stable.
More precisely, as shown in Fig. 7, the equilibrium should be classified as neutrally stable
in the sense that a finite perturbation about a equilibrium state s = s, and v = v, will result
in solutions forming trajectories being attracted back to either the original state (point O)
or a neighbouring state (point E or F), depending on the perturbation. In particular, if a
perturbation (As, Av) is applied along either OA or OB, which satisfies: P = P, (where
Py = —sy+ 2k exp(2v4)/2+1y), equilibrium point is stable. However, when the stress s is
suddenly increased by As, along OC, the new resulting equilibrium state will be at E, as
sliding evolves along CE according to P = P,(P, = P,— As)). The new sliding velocity v,
will be smaller than ¢, as P, < P,. Conversely, if a sudden drop in s by —As, is imposed
along OD, a new equilibrium state F will be resulted along DF which satisfies



Landslides modeled as bifurcations of creeping slopes 3461

4 2 0 2 4

Fig. 6. Trajectories of the solutions around a neutrally stable equilibrium line s = s, in s—v phase
plane. The plotisfor 2 = 1.5, x =2.0,and y = § = 5, = 1.0.

P = P, = P,+ As,. In short, a small perturbation to the system will result in a new equi-
librium state which can be arbitrarily close to the original state, depending on the magnitude
of the perturbation. Thus, the system is called neutrally stable, similar to the horizontal
rolling of a ball on a frictional surface caused by an applied force.

5.2. Trajectories for spiral points

The linear analysis for the trajectories in Section 4 is valid only in the vicinity of the
critical points. When the system is finitely perturbed, the trajectories for the nonlinear
system can, however, be obtained by solving eqns (12)—(14) or eqn (24) numerically by the
fourth-order Runge-Kutta method with error control [e.g. Press et al. (1989)]. Figure 8
plots some typical trajectories around a spiral point ; the parameters used for the slip surface
are: f= —0.5,y=25,5 =10, A= 1.5 and ¥ = 1.0. Note that eqn (23) is satisfied ; the
critical pointisat v = 1.0and s = 2.5, which is an attractor in the phase plane. The solutions
on the phase plane move towards to equilibrium point even though the perturbations in
both velocity and stress are finite. Thus, the linear analysis given in Section 4 does provide
an accurate prediction of the stability. Note also that, due to the nonlinear terms, the

P]( P()< P,

A52

Fig. 7. Responses of a equilibrium line subject to perturbations along OA, OB, OC and OD. The

new sliding velocities at E and F are ¢, (<v,) and v, (> v,), respectively. The trajectories along AB,

CE and DF satisfy the special cases of eqn (28): P = P,, P= P, (P, = Po—As, < P;)),and P= P,
(P, = Py+As, > Py), respectively.
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Fig. 8. Typical trajectories for the solutions around a spiral point in the s— phase plane. The spiral
pointisatv = 1.0and s = 2.5. Trajectories are for § = —0.5,y = 2.5,5,=1.0,A = 1.5and k = 1.0.

trajectories are not perfectly spiral as suggested by linear stability analysis (Compare Fig.
8 with the sketch on Fig. 3).

5.3. Trajectories for improper nodes

Typical trajectories of the solutions near an improper node are given in Fig. 9. the
parameters used are: = 0.5,y = 2.0, 5, = 1.0, 4 = 1.5 and « = 1.0. The equilibrium point
is at v = 2.0 and s = 2.0. As shown in the figure, all solutions approach the equilibrium
point as T — oo along a line with direction parallel to the eigenvector corresponding to the
larger eigenvalue. Again, the nonlinear analysis shows that linear analysis given in Section
4 provides an adequate description of the stability of the critical point even when finite
perturbation is imposed.
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Fig. 9. Typical trajectories for the solutions round an improper node in the s-v phase plane. The
improper node is at v = 2.0 and s = 2.0. Trajectories are for § =0.5,y =2, 5,=1.0, L = 1.5 and
K =1.0.
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Fig. 10. Typical trajectories for the solutions round a saddle point in the s— phase plane. The saddle
point is at v = 2.0 and s = 1.0. Trajectories are for f = 1.5, 7 = 1.0.5, = 2.0,/ =1.5and x = 1.0.

5.4. Trajectories for saddle points

Typical trajectories around a saddle point are depicted in Fig. 10. The parameters
used in the plot are: B =1.5, y=1.0, 5, = 2.0, 2 = 1.5 and x = 1.0; the corresponding
equilibrium pointisaty = 2.0and s = 1.0. The numerical simulation shows that all solutions
of the perturbed system move away from the equilibrium point; i.e. the equilibrium point
is unstable. Theoretically, if the perturbation is on the line along the eigenvector of the
small eigenvalue, the solution approaches the critical points as 7 — «c. However, this stable
solution is nearly impossible to be obtained numerically, as a slight deviation off the line
will produce an unstable solution.

6. CONCLUSION

In this paper, we have outlined a framework to model landslide as a consequence of
unstable creep when the slope is subjected to an external excitation, such as rainfall.
Motivated by Skempton’s (1985) data for clay and siltstone containing low clay fraction,
the one state variable friction law proposed by Ruina (1983) is adopted in this study for
soil or rock joints containing saturated clay. To capture the essence of the nonlinear friction
law, only infinite slope model is considered. By applying linear analysis, we show that the
equilibrium state, either a stationary or steadily creeping slope, is stable if it corresponds
to either a stable spiral point or a stable improper node in the s— phase plane; and it is
unstable if the equilibrium state corresponds to an unstable saddle point in the phase plane.
For the special case that f = 1 and y = s,, the equilibrium state becomes a neutrally stable
line in the s—v phase plane; the trajectories in the phase plane for this case can be obtained
analytically by eqn (28). The validity of the linear analysis is then checked by solving the
nonlinear system numerically; typical trajectories around a stable spiral point, a stable
improper node, a neutrally stable equilibrium line and an unstable saddle point are given.
In addition, it is argued that as slip proceeds and erosion occurs, § (a nonlinear parameter
in the system) may increase from § < 1 to f > 1. Thus, a stable improper node may evolve
to an unstable saddle point, as a result of environmental impact on the slope. Consequently,
the present analysis is capable to explain why landslide occurs at a particular rainfall, which
is not the largest in the history of the slope [e.g. Chau (1994): Chau and Chan (1994)].
Although the present analysis provides an alternative to the traditional methods, more
detailed experimental and theoretical studies are still required.
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